• 周四. 8月 11th, 2022

5G编程聚合网

5G时代下一个聚合的编程学习网

热门标签

常见算法的时间复杂度

admin

11月 28, 2021

常见算法的时间复杂度

冒泡排序

for(int i = 0 ;i<arr.length-1;i++){
        //第i趟比较
        for(int j = 0 ;j<arr.length-i-1;j++){
            //开始进行比较,如果arr[j]比arr[j+1]的值大,那就交换位置
            if(arr[j]>arr[j+1]){
                int temp=arr[j];
                arr[j]=arr[j+1];
                arr[j+1]=temp;
            }
        }
    }

二分查找(O( log2n ))

int binarySearch(int[] nums, int target) {
    int left = 0; 
    int right = nums.length - 1; // 注意

    while(left <= right) { // 注意
        int mid = (right + left) / 2;
        if(nums[mid] == target)
            return mid; 
        else if (nums[mid] < target)
            left = mid + 1; // 注意
        else if (nums[mid] > target)
            right = mid - 1; // 注意
        }
    return -1;
}

时间复杂度与空间复杂度

衡量代码的好坏包括两个非常重要的指标:
1.运行时间
2.占用空间

  • 时间维度:是指执行当前算法所消耗的时间,我们通常用「时间复杂度」来描述。
  • 空间维度:是指执行当前算法需要占用多少内存空间,我们通常用「空间复杂度」来描述。

时间复杂度

时间频度 一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。

并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。

时间复杂度 在刚才提到的时间频度中,n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律。为此,我们引入时间复杂度概念。 一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。

参考资料

发表评论

您的电子邮箱地址不会被公开。